Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int. microbiol ; 27(2): 525-534, Abr. 2024. mapas
Artículo en Inglés | IBECS | ID: ibc-232298

RESUMEN

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.(AU)


Asunto(s)
Humanos , Basidiomycota/genética , Café/genética , Café/microbiología , Enfermedades de las Plantas/microbiología , Etiopía
2.
Int Microbiol ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507629

RESUMEN

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.

3.
Heliyon ; 8(12): e11892, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36506396

RESUMEN

Ethiopian Arabica coffee is produced in different agroforestry systems which differ in forest management intensity. In forest coffee systems (FC), coffee shrubs grow naturally in the understory of Afromontane forests with little human intervention, whereas in semi-forest coffee systems (SFC) thinning of the canopy and removal of the understory is applied. Coffee leaf rust (CLR) disease is a growing concern for coffee agroforestry, but to what extent infection pressure is affected by management intensity is poorly known. Here we assessed CLR infection through time across FC and SFC systems in SW-Ethiopia. CLR infection was significantly higher for SFC, with a gradual reduction of this difference during the beginning of dry season (November) through main rainy season of (July). Our findings also demonstrated that CLR infections were significantly lower in the FC system as compared to SFC system in both years 2015/16 and 2020/21. The higher CLR infection was partly explained by lower crown cover and higher human impact. We expect that reduced wind speed and droplet penetration under closed canopies and reduced human-facilitated spore dispersal are the dominating mechanisms behind lower CLR infection in FC systems, yet lower coffee density in FC may also play a role. Overall, our results indicate that although higher management intensity still generally results in higher total yields per hectare, proportionally larger losses due to CLR infection can be expected. Therefore, introducing more coffee genetic diversity, screening resistant coffee varieties and increasing canopy cover in the SFC will mitigate the CLR disease pressure and guarantee the sustainability of higher yields of the system in the future. Also, lower yields in the FC will be rewarded through providing price premiums so that farmers instantly get a higher price for their lower yield, guaranteeing livelihoods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...